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LETTER TO THE EDITOR

Generalization of the Agranovich–Toshich transformation
and a constraint free bosonic representation for systems of
truncated oscillators

A V Ilinskaia† and K N Ilinski‡§
† Institute of Physics, St-Petersburg University, Universitetskii prosp. 2, 198904 St-Petersburg,
Russia
‡ School of Physics and Space Research, University of Birmingham, Birmingham B15 2TT, UK

Received 18 October 1995

Abstract. The generalization of the Agranovich–Toshich representation of Paulion operators
in terms of bosonic ones for the case of truncated oscillators of higher ranks is derived. We use
this generalization to introduce a new constraint-free bosonic description of truncated oscillator
systems. The corresponding functional integral representations for thermodynamic quantities are
given and the application to investigations of long-range order in the system is discussed.

About three decades ago Agranovich and Toshich [1] proposed a bosonic expression
for the creation and annihilation operators of Paulions (i.e. particles obeying fermionic
anticommutation relations on same the site and the bosonic commutation relations on
different sites; alternatively, it is possible to realize them as lattice spins1

2 or truncated
oscillators of rank 2). Explicitly, the equation has the form

P̂i

+ = b+
i

√√√√ ∞∑
k=0

(−2)k

(k + 1)!
(b+

i )kbk
i P̂i = (P̂ +

i )+ . (1)

Here P̂ +
i , P̂i are the creation and annihilation operators of a Paulion on sitei, which obey

the Paulionic commutation relations

P̂ +
i P̂i + P̂i P̂

+
i = 1 (P̂ +

i )2 = P̂i

2 = 0

[P̂ +
i , P̂j ] = [P̂i , P̂j ] = 0 for i 6= j

(2)

andb+
i , bi are the bosonic operators onith site.

Particles with anticommutation relations (2) on the same site and bosonic commutation
relations on different sites occur widely in spin lattices, magnetic systems, models describing
excitons in molecular crystals, defectons in quantum crystals and many others. In the
original paper [1] Frenkel excitons were considered in connection with the possibility of
their Bose condensation. As is usual in the problem of Bose condensation, the definition of
an auxiliary bosonic description of the system is a central point because then the standard
theory of a non-ideal Bose gas can be applied.
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On the other hand, there are several applications of high-rank truncated oscillators. For
example, it was recently shown that such operators can be used for the second quantization
of particles with Haldane exclusion statistics [2]. Truncated oscillators also find applications
in nonlinear optics, semiconductors, parasupersymmetric theories and other fields. That is
why it seems to be interesting to generalize the Agranovich–Toshich description of truncated
oscillators of rank 2 to higher ranks and investigate the corresponding bosonic representation.

As in the approach of the sigma model with a Wess–Zumino term [4] we will treat
the constraint on the number of particles on each site exactly. To do this we will use the
mapping of the orthogonal sum of identical copies of the truncated oscillator space of states
to the bosonic space of states. In this mapping the creation and annihilation operators of
truncated bosons are represented in the form of a power series of the usual bosonic creation
and annihilation operators. This compels us to deal with infinite series of different vertices
in the diagram technique. The choice of relevant contributions in such series should be
dictated as usual by features of the concrete problem.

The letter is constructed as follows. We first prove the generalization of the Agranovich–
Toshich equation for the case of an arbitrary rank of truncated oscillators. We give both
variants of the mapping—with and without the square root (which corresponds to the
equation proposed by Chernyak [3] for the Paulionic case; in practical use the latter is
even more convenient). Then we describe an associated bosonic system for the case of
many degrees of freedom and give the functional integral representation of thermodynamic
quantities of the system. Several remarks conclude the letter.

Our first goal is to express the creation and annihilation operators of truncated bosons
B+, B of rank m with the algebra

BB+ − B+B = 1 − m

(m − 1)!
(B+)m−1Bm−1 (B+)+ = B (B+)m = Bm = 0

in terms of the standard bosonic creation and annihilation operatorsb+, b. In this section
only one degree of freedom is considered but the generalization to many degrees of freedom
is straightforward and will be considered in the next section. First of all we will construct
the number particle operator of the truncated bosonsN̂ using the following operator:

1 + q(b+b−k) + q2(b+b−k) + · · · + q(m−1)(b+b−k)

whereq = exp
(
i2π/m

)
andm is the rank of the truncated bosons. One can prove that this

operator does not equal zero only on states|lm + k〉, wherel = 0, 1, 2, . . .. So the operator
N̂ = B+B can be expressed as follows:

N̂ = 0 ·
(

1 + qb+b + q2b+b + · · · + q(m−1)b+b
) 1

m

+1 ·
(

1 + q(b+b−1) + q2(b+b−1) + · · · + q(m−1)(b+b−1)
) 1

m

+ · · · + (m − 1)
(

1 + q(b+b−m+1) + q2(b+b−m+1) + · · · + q(m−1)(b+b−m+1)
) 1

m
.

Summing terms of the same order one can obtain the following expression for the operator
N̂ :

N̂ =
m−1∑
k=1

qk

1 − qk
qkb+b + m − 1

2
. (3)
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Now to order bosonic operators we can use the equation for the normal ordered exponent

qkb+b = exp

(
i
2π

m
kb+b

)
=: exp(qk − 1)b+b :

where :· · · : denotes normal ordering. Then expression (3) takes the form

N̂ =
∞∑
l=1

m−1∑
k=1

(−1)l

l!
qk(1 − qk)l−1(b+)lbl . (4)

Now let us assume that the creation (annihilation) operators of truncated bosons can be
written in the following form:

B+ = b+

√√√√ ∞∑
k=0

αk(b+)kbk B = (B+)+

and assume that theαk are real. Then, using expression (4) for the number particle operator
N̂ = B+B, one can obtain the expression for the coefficientsαk as

αl =
m−1∑
k=1

(−1)l+1

(l + 1)!
qk(1 − qk)l .

For m = 2 (q = −1) the coefficients take the form

αl = (−2)l

(l + 1)!

which gives us the Agranovich–Toshich representation (1) for the creation (annihilation)
operators of truncated bosons of rank 2. So we have proved the generalization of
Agranovich–Toshich equation for truncated oscillators of higher ranks:

B+ = b+

√√√√ ∞∑
k=0

m−1∑
k=1

(−1)l+1

(l + 1)!
qk(1 − qk)l(b+)kbk B = (B+)+ q = ei2π/m .

Let us now ‘take the square root’ in equation (5). To do this we will follow the method
proposed by Chernyak in [3]. The main point of the method is to use the projection operator
on the vacuum state of the auxiliary boson system, i.e. on the vector|0〉. To express this
projection operatorP in terms ofb+, b the coherent state representation is convenient

|z〉 = exp(− 1
2 z̄z) exp(zb+)|0〉

〈z′|z〉 = exp(− 1
2 z̄′z′ − 1

2 z̄z + z̄′z) .

From the last relations one easily derives

〈z′|P|z〉 = exp(−z̄′z)〈z′|z〉 .

On the other hand, for anyk, l we have

〈z′|(b+)kbl|z〉 = (z̄′)kzl〈z′|z〉 .

Then we can conclude that

〈z′|P|z〉 =
∞∑
l=0

(−1)l

l!
〈z′|(b+)lbl|z〉 .
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This means that the projection operator has the following expression in terms of the bosonic
creation and annihilation operators:

P =
∞∑
l=0

(−1)l

l!
(b+)lbl ≡: exp(−b+b) : . (5)

We now can use equation (5) to construct the creation and annihilation operatorsB+, B

which obey the algebra (3). Indeed, it is easy to check from the matrix form that the
following relations hold:

B+ =
∞∑

n=0

m−2∑
k=0

(b+)mn+k+1Pbmn+k

√
k + 1

(mn + k)!
√

mn + k + 1

B =
∞∑

n=0

m−2∑
k=0

(b+)mn+kPbmn+k+1

√
k + 1

(mn + k)!
√

mn + k + 1
.

(6)

It is obvious that relations (6) satisfy the algebra (3). On the other hand, the operators given
by relations (5) satisfy the same algebra and have the same matrix form. Hence we see
that equations (6) corresond to the ‘taking of the square root’ in (5). For the particular case
m = 2 our equations reduce to the equations originally obtained by Chernyak [3] for the
case of Paulionic operators.

We will now describe the mapping from the system of truncated oscillators to the
auxiliary bosonic system. The goal is to escape the introduction of a constraint. To do
this we will embed an infinite number of copies of the finite dimensional space of states in
the bosonic space of states and then proceed with the consideration of this new (auxiliary)
bosonic space.

To explain this in detail, let us first of all consider one degree of freedom (i.e. a single
site). Then the creationB+ and annihilationB operators have the following matrix form in
the m-dimensional Hilbert space of statesHB (m is a rank of the truncated oscillator):

B+ =



0 0 0 0 · · · 0

1 0 0 0 · · · 0

0
√

2 0 0 · · · 0

0 0
√

3 0 · · · 0

. . . . . .

. . . . . .

0 0 0 0
√

m − 1 0


B = (B+)Tr

with basis{|0〉, |1〉, . . . , |m − 1〉} and the obvious notations. Now we introduce the infinite
orthogonal sumHb = ⊕∑∞

n=0 HB,n of suchm-dimensional Hilbert spacesHB,n with basis
{{|0〉, |1〉, . . . , |m − 1〉}, . . . , {|nm + 1〉, |nm + 2〉, . . . , |nm + m − 1〉}, . . .}. The extensions
of the creation and annihilation operatorsB+, B in this space have the form:

B̂+ = diag(B+, B+, . . .) B̂ = diag(B, B, . . .) .

It follows that all thermodynamic quantities calculated with operatorsB̂+, B̂ are exactly the
same as those calculated with the original operatorsB+, B. Indeed, for example,

〈B̂+B̂〉 ≡ Sp(B̂+B̂e−β(E−µ)B̂+B̂ )

Sp(e−β(E−µ)B̂+B̂ )
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is identical to the same expressions without hats due to the block structure of our operators
(we should add that the partition functions differ by an infinite numerical constant which
does not affect observable physical quantities). The conclusion is still valid if we start with
a lattice of truncated oscillators and then introduce hats for the operators.

We have found above the corresponding expressions for the creation and annihilation
operatorsB̂+, B̂ in terms of the bosonic creation and annihilation operatorsb+, b acting in
the Hilbert spaceHb. These are given by equation (5) with the square root or by equation
(6) without it (which we will use below).

The equations considered above in this letter can be applied to construct the Hamiltonian
of the auxiliary bosonic system. So if we start with the following HamiltonianHt of
truncated oscillators on a lattice:

Ht =
∑

i

1B+
i Bi +

∑
i 6=j

Mi,jB
+
i Bj +

∑
i 6=j

(Li,jB
+
i B+

j + HC) +
∑
i 6=j

Ji,jB
+
i BiB

+
j Bj

then the corresponding Hamiltonian of the auxiliary bosons has the form:

H =
∑

i

1

∞∑
l=0

a(l)(b+
i )l+1bl+1

i +
∑
i 6=j

Mi,j b
+
i Sij bj

+
∑
i 6=j

(Li,j b
+
i b+

j Sij + HC) +
∑
i 6=j

Ji,j

∞∑
l,m=0

a(l)a(m)(b+
i )l+1(b+

j )m+1bl+1
i bm+1

i .

Here the following notation has been introduced:

Si,j =
∞∑

l,m=0

A(l)A(m)(b+
i )l(b+

j )mbl
ib

m
j

and the coefficientsA(l) anda(l) are defined as

A(l) ≡
min(m−2,l)∑

k=0

[ l−k
m ]∑

n=0

(−1)l−mn−k

(l − mn − k)!

√
k + 1

(mn + k)!
√

mn + k + 1

and

a(l) ≡ (−1)l+1

(l + 1)!

m−1∑
k=1

qk(1 − qk)l .

Let us note once more that the system with HamiltonianH is equivalent to the original
Hamiltonian of truncated bosonsHt and does not require any additional constraint.

Using the standard procedure, we can write down the functional integral representation
of the partition function and correlators of the auxiliary bosonic system and the original
system of truncated oscillators. For example, according to the definition and equation (6),
the following relations arise:

Z ≡ Sp(e−βH ) =
∫

Db+(τ ) Db(τ) eS

〈B+
i Bj 〉 =

∫
Db+(τ ) Db(τ)

∞∑
l,m=0

A(l)A(m)(b+
i (τ ))l+1(b+

j (τ ))mbl
i(τ ))bm+1

j (τ )eS/Z
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where the actionS is defined by the form of the HamiltonianH :

S =
∫ β

0

(∑
i

∂b+
i (τ )

∂τ
bi(τ ) −

∑
i

1

∞∑
l=0

a(l)(b+
i (τ ))l+1bl+1

i (τ )

+
∑
i 6=j

Mi,j b
+
i (τ )Sij (τ )bj (τ ) +

∑
i 6=j

(Li,j b
+
i (τ )b+

j (τ )Sij (τ ) + HC)

+
∑
i 6=j

Ji,j

∞∑
l,m=0

a(l)a(m)(b+
i (τ ))l+1(b+

j (τ ))m+1bl+1
i (τ )bm+1

j (τ )

)
dτ .

All other correlators can be obtained in the same manner and give us the bosonic functional
integral representation which is free of constraints and limiting procedures (how it would
be if we considered an analog of the hard-core interaction on site and took a limit). The
functional integral form then allows the simplest approach to the derivation of diagram
technique rules which are standard ones for the problems in question. It is tempting to note
that this technique is much less complicated and much more straightforward than the spin
operator technique and is very natural for the consideration of problems concerning Bose
condensation (long-range order) in the system just using the standard Bogoliubov approach
to the subject.

In summary, in this letter we have considered the generalization of the Agranovich–
Toshich representation for the creation and annihilation operators of truncated oscillators
in terms of auxiliary bosons. This allowed us to formulate a model of interacting bosons
with the equivalent thermodynamic behaviour and express various correlators of a truncated
oscillator system through series of correlators of interacting bosons. It is important to note
that such a description is free of constraints or limiting procedures which occur in other
approaches.

Moreover, this technique can be applied to the high-spin systems or Hubbard-like models
using the obvious transformation of truncated oscillator operators to the corresponding spin
operators or the Hubbard operators. This allows one to escape the complicated operator
technique and make use of standard diagrammatic methods alone.

However, we have to note the difficulties which arise in this framework. The method
leads to infinite series of types of interactions and thus infinite series of the various vertices in
the diagrams. Which contribution is relevant has to be determined by the concrete physical
problem where several assumptions about the structure of a ground state and excitations have
to be made. Of course this problem occurs in any perturbation theory! We think that the
technique described above could be convenient in the consideration of questions concerning
the existence of Long Range Order in a system which is equivalent to Bose condensation.
Indeed the interacting boson picture seems to be most natural for such investigation.

We want to thank V M Agranovich, J M F Gunn and M W Long for discussions about
the problem. This work was supported by the Grant of Russian Fund of Fundamental
Investigations N 95-01-00548, the Euler stipend of the German Mathematical Society,
INTAS-939 and by UK EPSRC Grant GR/J35221. We are grateful for the hospitality
to the International Center for Theoretical Physics where the work was finished.
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